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Universal Behavior of One-Dimensional Gapped Antiferromagnets
in a Staggered Magnetic Field
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We study the properties of one-dimensional gapped Heisenberg antiferromagnets in the presen
strong staggered magnetic field. For these systems we predict a universal form for the staggered
tization curve. This function, as well as the effect the staggered field has on the energy gaps in lo
dinal and transversal excitation spectra, is determined from the universal form of the effective pot
in Os3d-symmetrics1 1 1d-dimensional field theory. Our theoretical findings are in excellent agr
ment with recent neutron scattering data onR2BaNiO5 (R ­ magnetic rare earth) linear-chain mixed
spin antiferromagnets. [S0031-9007(98)06459-X]

PACS numbers: 75.10.Jm, 75.30.Cr, 75.40.Cx
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One-dimensional isotropic Heisenberg antiferroma
nets with an exchange gap in the magnetic excitati
spectrum have been at the center of theoretical and
perimental attention for almost two decades. This cla
of materials includesinteger-spin Heisenberg chains [1]
(commonly referred to as Haldane-gap systems) and h
integer spin ladders with aneven number of legs [2].
Because of the presence of strong quantum fluctuatio
in these systems the staggered magnetization has a fi
correlation length. The principal feature of the excitatio
spectrum is a degenerate triplet of sharp spin-1 exci
tions commonly referred to as magnons, separated fr
the ground state by a finite energy gapD. In recent years
much work was aimed at understanding the behavior
such gapped 1D antiferromagnets in the presence of an
ternaluniformmagnetic field [3–5]. However, the effec
of a staggeredfield that couples directly to the order pa
rameter of the classical system has not been investiga
in sufficient detail. This is mainly due to the fact that
strong magnetic field modulated on the microscopic sca
was thought to be all but impossible to realize expe
mentally [6]. A breakthrough came with neutron scatte
ing experiments onR2BaNiO5 (R ­ magnetic rare earth)
linear-chain nickelates and their interpretation in terms
noninteracting Haldane spin chains immersed in a stro
effective staggered exchange field [7,8]. InR2BaNiO5

compounds almost perfectly isotropic antiferromagne
S ­ 1 chains are formed by the Ni21 ions. The effec-
tive staggered field is generated by theR31 sublattice that
becomes ordered magnetically below some Néel tempe
ture TN . The staggered field intensity is proportional t
the magnitude of the ordered moment ofR31 magnetic
ions and can be controlled in an experiment indirectl
by varying the temperature. One of the most significa
results was the first direct measurement of the stagge
magnetization curveMssHsd of a Haldane spin system [9].
It was found that of particular value as model systems a
sNdxY12xd2BaNiO5 species, where the effective interac
tion betweenR and Ni sublattices is of Ising type [10],
0031-9007y98y80(26)y5786(4)$15.00
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so that the transverse excitations on the Haldane cha
are effectively decoupled from those on theR subsys-
tem. Thus the effect of the staggered field on transvers
magnetic excitation spectrum of an isolated Ni21 Haldane
chain could be measured experimentally [10].

In [8] we gave a qualitative theoretical description o
quantum disordered antiferromagnets in the presence
a staggered magnetic field and discussed the results
relevance to existing data onR2BaNiO5 materials. The
principal conclusion was that in a weak staggered fie
the energy gapD increases in proportion to the square
of induced staggered moment on the Haldane chains.
was also shown that a staggered field partially lifts th
degeneracy of the magnon triplet, the gap in the long
tudinal mode being 3 times more sensitive toHs than
that in two transversal magnons. In the present pap
we refine this approach and obtainquantitative predic-
tions that we directly compare to recent experimental da
for sNdxY12xd2BaNiO5. We demonstrate that the behav-
ior of both transversal and longitudinal energy gaps i
the presence of a staggered field is contained in the sta
gered magnetization curveMssHsd. Our central result is
that for a variety of gapped one-dimensional antiferro
magnetsMssHsd has auniversalshape defined by three
experimentally accessible parameters: zero-field magn
energy gapD, spin-wave velocityy, and the renormaliza-
tion constantZ, related to the residue of the magnon pole
at Hs ­ 0.

A traditional theoretical description of spin dynamics
in one-dimensional quantum antiferromagnets is based
the mapping of these systems to thes1 1 1d-dimensional
Os3d nonlinear sigma model (NLSM) with one spatial and
one temporal coordinates. This approach was first intr
duced by Haldane [1] for a Heisenberg antiferromagnet
spin chain, and later extended to a variety of other system
(for a recent review see [11]). Although this mapping is
based on a quasiclassical approximation, and in princip
it should work well only for large spinsS ¿ 1, it gives
quantitatively correct predictions for any spin value. In
© 1998 The American Physical Society
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the absence of topological term the NLSM Lagrangian
the presence of external (staggered) field can be written

L ­
1

2g0

Z
dx

"
1

y0

√
≠ $w
≠t

!2

2 y0

√
≠ $w
≠x

!2

1 2g0S $Hs $w

#
. (1)

Here $w is a three component unit vector ($w2 ­ 1),
pointing in the direction of the local staggered momen
y0 is the bare spin-wave velocity of the system, andg0
is the dimensionless parameter, controlling the streng
of quantum fluctuations. Notice that in our notatio
the staggered fieldHs is coupled to the local staggered
spin. The staggeredmagnetic field H

smd
s , coupled to

local staggered magnetic moment, is proportional
Hs: gmmBH

smd
s ­ Hs, where gm is the g factor of a

magnetic ion, andmB is the Bohr magneton. In a
large-S mapping of the Heisenberg spin chain to th
NLSM [1] one has y0 ­ 2JS, and g0 ­ 2yS. In a
more general situation these parameters should be trea
as phenomenological constants fine-tuned to give t
correct low energy properties of the system. Thes1 1 1d-
dimensionalOs3d NLSM is always in a disordered state
The correlation length in the absence of staggered fie
is given by j , a exps2pyg0d, where a is the lattice
spacing. The gapD in the excitation spectrum is related
to the correlation length via a usual relationD ­ h̄yyj.

In order to calculate the macroscopic properties
the system such as its staggered magnetization cu
or the excitation spectrum near the antiferromagne
(AFM) zone center, one needs to coarse grain t
NLSM Lagrangian by integrating out the largeq and
v (small x and t) degrees of freedom. The change o
parameters of the Lagrangian as a result of this coa
graining is described by the renormalization grou
(RG) flow equations. In real space the renormalizatio
procedure corresponds to replacing the field$wsx, td
with $wrsx, td ­ syyl2d

R
jx02xj,l,jt02tj,lyy $wsx0, t0d dx0 dt0.

It is easy to see that the coarse-grained field va
able $wr no longer has a well defined length. In
other words, as a result of coarse graining th
NLSM Lagrangian, characterized by a rigid con
straint $w2 ­ 1, becomes a “soft-spin” Lagrangian. The
length of coarse-grained field variable$wr has a proba-
bility distribution, defined by some effective potential
The fully renormalized Lagrangian can be written as

L ­
Z

dx

"
1

2y

√
≠ $f
≠t

!2

2
y

2

√
≠ $f
≠x

!2

2 Usj $fjd

1
p

Z $Hs
$f

#
. (2)

In this expression we have introduced therenormalized
staggered field variable$f, defined through

p
Z $f ­

S $w. The renormalization parameterZ was fine-tuned to
give the desired form of the derivative terms, withy
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being the true spin-wave velocity. To specify this full
renormalized Lagrangian we need to know the for
of effective potentialUsj $fjd. For small $f it can be
expanded in Taylor series in$f2. The quadratic term can
be written assD2y2yd $f2, whereD is the true energy gap
of the magnon spectrum. Indeed, the quadratic part of
should describe a triplet of “relativistic” noninteractin
bosons. The spin-wave velocityy plays the role of the
speed of light in its relativistic analog. The above for
of the quadratic term correctly reproduces the spin-wa
dispersionE sp 1 kd ­

p
D2 1 y2k2. The relativistic

analogy also determines the intensity of the magnon p
in the spin correlator as

S
ab
SMAsq, vd ­ dab

Zy

2E sqd
2pdfv 2 E sqdg . (3)

In s1 1 1d dimensions it is convenient to write the Taylo
expansion ofUsj $fjd in terms of the set of dimensionles
parametersu2n defined by

Usj $fjd ­
D2

y

√
1
2

j $fj2 1
1
4!

u4j $fj4

1
1
6!

u6j $fj6 1 . . .

!
. (4)

The effective potential, truncated at thej $fj4 term, cor-
responds to the Ginzburg-Landau Lagrangian introduc
by Affleck [12] on phenomenological grounds to descri
Haldane-gap systems.

The linear staggered susceptibility at zero external sta
gered field can be derived from the quadratic part of L
grangian describing noninteracting magnons. Indeed,
expectation value of$f in the presence of a weak staggere
field is easily obtained by balancing the quadratic term a
the source term in Eq. (2). The result is the single mo
contribution to zero-field staggered susceptibility

x ssds0d ­
Zy

D2 . (5)

We can compare this prediction to the numerical results
the S ­ 1 Heisenberg chain. Using the numerical valu
Z ­ 1.26 (g in their notation), y ­ 2.49J, and D ­
0.41J, reported in [13], the single mode approximatio
givesx ssds0d . 18.7yJ in excellent agreement with Monte
Carlo result21s1dyJ [14]. This is a manifestation of the
well known fact that in Haldane-gap systems virtually a
spectral weight at the AFM zone center is concentrated
the magnon triplet.

The main concern of the present paper is thenonlinear
behavior in arbitrary strong staggered fields. In order
describe these effects quantitatively one needs to know
numerical values of dimensionless couplingsu2n, which
in principle should depend on the parameters of the b
Lagrangian. If, however, the correlation length is suf
ciently long one can safely assume that these coupli
5787
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are at their RG fixed point values. Fortunately, very a
curate numerical values of the universal fixed point co
plings u4, u6, andu8 were recently obtained by Pelissett
and Vicari in [15,16]. They carefully compared the re
sults of e, 1yN, high temperature, and strong couplin
expansions ofOsNd-symmetric models ind dimensions
with the results of Monte Carlo simulations. Ford ­ 2,
N ­ 3 their estimates areu4 ­ 11.8s1d, u6 ­ 3.33s10d 3

u2
4 ­ 460s20d, u8 ­ 20s5d 3 u3

4 ­ 33 000s8000d [17]. In
[15] the deviations of couplings from their fixed point val
ues were estimated asu2nsjd 2 u2ns`d , 1yj2. For the
S ­ 1 Heisenberg antiferromagnet the correlation leng
j . 6 (in units of lattice spacing). Therefore, one coul
reasonably expect the deviation ofu2n from their fixed
point values to be around1y36 . 3%. This fact is con-
firmed numerically in Fig. 2 of [15].

From the preceding explanation it follows that the qua
tic term lj $fj4 used by Affleck [12] to describe the ef-
fects of pairwise magnon repulsion has, in fact, a unive
sal strengthl ­ su4y4!d sD2yyd . 0.49D2yy. In their
theoretical study of the effect of the external field o
the excitation spectrum in NENPfN:sC2H8N2d2NO2ClO4g
Mitra and Halperin [18] made a rough estimate of th
value of l. By matching the first term in perturbative
1yHs high field expansion of the magnetization functio
with a small Hs expansion they have an order of mag
nitude estimate, which in our notation corresponds
l . ZD2y4y , 0.31D2yy rather close to our more re-
fined result.

The effective potential manifests itself in the staggere
magnetization curve of a 1D gapped antiferromagnet. L
us select thez axis along the external staggered field
The expectation value of the field$f is defined by the
minimum of the total potential energy (effective potentia
plus an external field term) located at

p
Z Hs ­ U 0skfzld.

Therefore, the staggered magnetization curveMssHsd is
defined by the equation

Hs ­
1

p
Z

U 0

√
Msp

Z

!

­ Ms
D2

Zy

"
1 1

u4

3!

M2
s

Z
1

u6

5!

M4
s

Z2
1

u8

7!

M6
s

Z3
1 . . .

#
.

(6)

Using the numerical estimates foru4, u6, u8 quoted pre-
viously, andZ ­ 1.26 from [13], for S ­ 1 chain we ob-
tain x ssds0dHs ­ Mss1 1 1.56M2

s 1 2.4M4
s 1 3.27M6

s d.
This result can be directly compared to theMssHsd
curve measured experimentally insNdxY12xd2BaNiO5 [9]
(Fig. 1). The solid line is a fit to the experimenta
data with x ssds0d being the only adjustable paramete
We note that the result of the fitx

ssd
exps0d ­ 0.53 meV21

differs from the expected valuex
ssd
theors0d ­ 18.7yJ .

0.85 meV21. It has to be emphasized, however, that th
experimental scaling of the abscissa in Fig. 1 in units
magnetic field heavily relies on a series of assumptio
5788
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FIG. 1. The staggered magnetization curve as deduced f
neutron powder diffraction data [9] onsNdxY12xd2BaNiO5
(x ­ 0.25, 0.5, 1). The effective staggered field is estimate
through a mean-field analysis [9]. The solid line is a sing
parameter fit with our theoretical resultx ssds0dHs ­ Mss1 1
1.56M2

s 1 2.4M4
s 1 3.27M6

s d (see text).

and simplifications regarding the properties of rare ea
ions, and the exact applicability of the mean-field mod
in a wide temperature range [9]. The experimenta
determinedshape of MssHsd, on the other hand, is a
more robust result and is in excellent agreement with
theoretical predictions.

The effective potential also contains information o
the behavior of the excitation spectrum in the presen
of a finite staggered field. The magnon excitations
by definition deviations of local staggered magnetizati
from its equilibrium value. When theOs3d symmetry
is broken by the external field, the degeneracy of
magnon triplet is partially lifted. In this case one shou
distinguish between the gapDjj in the longitudinal branch
of dfz excitations and the transversal gapD' in the
doublet of dfx, dfy excitations. Both these gaps a
determined by the quadratic terms in the expans
of Usj $f 1 d $fjd . Usj $fjd 1

P
sD2

ay2yddf2
a . After

some straightforward algebra one getsUsj $f 1 d $fjd ­
Us

q
skfzl 1 dfzd2 1 df2

x 1 df2
y d . Uskfzld 1 U 0 3

skfzlddfz 1 fU 0skfzldy2kfzlg sdf2
x 1 df2

y d 1 fU 00 3

skfzldy2gdf2
z . The term linear in dfz is precisely

compensated by2
p

Z Hsdfz coming from the external
field term. The above expression for the quadra
terms in the expansion ofUsj $f 1 d $fjd should not
come as a big surprise. Indeed, for the isotrop
system the transversal staggered susceptibility in
presence of a finite staggered fieldHs is given by
x

ssd
' ­ MssHsdyHs, while the longitudinal staggered

susceptibility is x
ssd
jj ­ dMssHsdydHs. On the other

hand, in the single mode approximation one h
x ssd

a sHsd ­ ZyyD2
asHsd. This argument again fixes th
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FIG. 2. Inelastic neutron scattering data for the relativ
increase in the energy gap of the Ni-chain magnon as a func
of induced staggered spinMs in sNdxY12xd2BaNiO5 [9]. Solid
lines are defined by (9) and (10). The experimental data ag
with the theoretical prediction for thetransversalgap.

longitudinal and transversal energy gaps at

D2
'sMsd ­ y

p
Z U 0sMsy

p
Z d

Ms

­ D2

"
1 1

u4

3!

M2
s

Z
1

u6

5!

M4
s

Z2
1 . . .

#
; (7)

D
2
jjsMsd ­ yU 00sMsy

p
Z d

­ D2

"
1 1

u4

2!
M2

s

Z
1

u6

4!
M4

s

Z2 1 . . .

#
. (8)

At this point it is important to see what assumption
the derivation of Eqs. (7) and (8) relies on. Indeed, w
implicitly assumed that the only parameter of the syste
which changes in the presence of staggered field are
ergy gapsD' andDjj. We have disregarded the change
in Z and y with field. It is well known that the spin-
wave velocity is not very sensitive to the parameters
the system and changes only slightly when, for instan
anisotropy is switched on [13]. This is a rather natur
result in field theoretical formulation of the problem sinc
the velocity should not be renormalized at all except d
to intrinsic microscopic asymmetry of spatial and temp
ral directions (spatial coordinate has underlying discre
lattice structure, while time is naturally continuous). Th
weakness of the change ofZ with the field is due to the
fact that in two dimensions the critical exponenth, relat-
ing Z to the correlation lengthj as Z , j2h , is equal
to zero. ConnectingZ to its NLSM counterpartg0 in
(1) one can approximately writej , exps22pyZd or,
alternatively, Z21sjd ­ const2 s2pd21 ln j ­ const1
e
tion

ree

s
e
m
en-
s

of
ce,
al
e
ue
o-
te
e

s2pd21 ln D. We see that a change in the gapD leads
only to the logarithmic change inZ. Such corrections are
disregarded at the precision of our calculations. In (2) th
weak dependence ofZ on j is reflected in the omission
of the nonlinear terms containing derivatives of$f. It is a
well known fact [19] that for small values ofh this is a
valid approximation. We conclude with the derivation of
an explicit expression for the staggered field dependen
of longitudinal and transversal gaps forS ­ 1 Heisenberg
chain. Plugging the numerical values foru4, u6, u8, and
Z in Eqs. (7) and (8) we get

D
2
'sMsd
D2 ­ 1 1 1.56M2

s 1 2.4M4
s 1 3.27M6

s , (9)

D
2
jjsMsd
D2

­ 1 1 4.68M2
s 1 12M4

s 1 22.9M6
s . (10)

As shown in Fig. 2, our prediction for the transversal gap
is in excellent agreement with neutron scattering data o
the sNdxY12xd2BaNiO5 family of compounds [10], with
no adjustable parameters.
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